A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
Wei Jiao,
Rosa Karlic,
Edwin Cuppen,
Alexandra Danyi,
Jeroen de Ridder,
Carla van Herpen,
Martijn P. Lolkema,
Neeltje Steeghs,
Quaid Morris,
Fatima Al-Shahrour,
Gurnit Atwal,
Peter J. Bailey,
Andrew V. Biankin,
Paul C. Boutros,
Peter J. Campbell,
David K. Chang,
Susanna L. Cooke,
Vikram Deshpande,
Bishoy M. Faltas,
William C. Faquin,
Levi Garraway,
Gad Getz,
Sean M. Grimmond,
Syed Haider,
Katherine A. Hoadley,
Vera B. Kaiser,
Rosa Karlić,
Mamoru Kato,
Kirsten Kübler,
Alexander J. Lazar,
Constance H. Li,
David N. Louis,
Adam Margolin,
Sancha Martin,
Hardeep K. Nahal-Bose,
G. Petur Nielsen,
Serena Nik-Zainal,
Larsson Omberg,
Christine P’ng,
Marc D. Perry,
Paz Polak,
Esther Rheinbay,
Mark A. Rubin,
Colin A. Semple,
Dennis C. Sgroi,
Tatsuhiro Shibata,
Reiner Siebert,
Jaclyn Smith,
Lincoln D. Stein,
Miranda D. Stobbe,
Ren X. Sun,
Kevin Thai,
Derek W. Wright,
Chin-Lee Wu,
Ke Yuan,
Junjun Zhang
Feb 04, 2021
Abstract: In cancer, the primary tumour’s organ of origin and histopathology are the strongest determinants of its clinical behaviour, but in 3% of cases a patient presents with a metastatic tumour and no obvious primary....