An Advanced Mesosphere Temperature Mapper and other instruments at the Arctic Lidar Observatory for Middle Atmosphere Research in Norway (69.3°N) and at Logan and Bear Lake Observatory in Utah (42°N) are used to demonstrate a...
On 2017 August 17, Advanced LIGO and Virgo observed GW170817, the first gravitational-wave (GW) signal from a binary neutron star merger. It was followed by a short-duration gamma-ray burst, GRB 170817A, and by a non-thermal...
On 2017 August 17, Advanced LIGO and Virgo observed GW170817, the first gravitational-wave (GW) signal from a binary neutron star merger. It was followed by a short-duration gamma-ray burst, GRB 170817A, and by a non-thermal...
Internal gravity waves (GWs) are ubiquitous in the atmosphere, making significant contributions to the mesoscale motions. Since the majority of their spectrum is unresolved in global circulation models, their effects need to...
An Advanced Mesosphere Temperature Mapper and other instruments at the Arctic Lidar Observatory for Middle Atmosphere Research in Norway (69.3°N) and at Logan and Bear Lake Observatory in Utah (42°N) are used to demonstrate a...
We conducted simulations with a 4-km resolution for Hurricane Joaquin in 2015 using the weather research and forecast (WRF) model. The model data are used to study stratospheric gravity waves (GWs) generated by the hurricane...
Internal gravity waves (GWs) are ubiquitous in the atmosphere, making significant contributions to the mesoscale motions. Since the majority of their spectrum is unresolved in global circulation models, their effects need to...
We conducted simulations with a 4-km resolution for Hurricane Joaquin in 2015 using the weather research and forecast (WRF) model. The model data are used to study stratospheric gravity waves (GWs) generated by the hurricane...
|< |
< |
1 |