The aggregation of intrinsically disordered proteins is a hallmark of neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's disease. Although we currently have a good molecular level understanding on how...
Structured Illumination Microscopy, SIM, is one of the most powerful optical imaging methods available to visualize biological environments at subcellular resolution. Its limitations stem from a difficulty of imaging in multiple...
Postnatally derived cultures of ventral mesencephalic neurons offer several crucial advantages over embryonic ventral mesencephalic cultures, including a higher content of TH-positive cells and the ability to derive cells from...
This perspective article outlines mechanisms of mitochondrial import and protein degradation and how these have been linked to alpha-synuclein and Amyloid beta (Aβ) homeostasis. Our aim is to underpin and stimulate the debate on...
Kinetic assay of seeded growth: The graph shows the variation in intrinsic fluorescence intensity of amyloid fibrils. Fluorescence increases during the seeded aggregation of α-synuclein seeds with α-synuclein monomeric protein...
The initial state of the intrinsically disordered protein α-synuclein (aSyn), e.g., the presence of oligomers and degradation products, or the presence of contaminants and adducts can greatly influence the aggregation kinetics...
Mitochondria play a key role in oncogenesis and constitute one of the most important targets for cancer treatments. Although the most effective way to deliver drugs to mitochondria is by covalently linking them to a lipophilic...
α-synuclein (αS) is an intrinsically disordered protein whose fibrillar aggregates are the major constituents of Lewy bodies in Parkinson's disease. Although the specific function of αS is still unclear, a general consensus is...
The self-assembly of normally soluble proteins into fibrillar amyloid structures is associated with a range of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. In the present study, we show that...