This study investigated changes in performance and technique that occur during maximal effort bend sprinting compared with straight-line sprinting under typical outdoor track conditions. Utilising a repeated measures design, three-dimensional video analysis was conducted on seven male sprinters in both conditions (bend radius: 37.72 m). Mean race velocity decreased from 9.86 to 9.39 m/s for the left step (p = 0.008) and from 9.80 to 9.33 m/s for the right step (p = 0.004) on the bend compared with the straight, a 4.7% decrease for both steps. This was mainly due to a 0.11 Hz (p = 0.022) decrease in step frequency for the left step and a 0.10 m (p = 0.005) reduction in race step length for the right step. The left hip was 4.0° (p = 0.049) more adducted at touchdown on the bend than the straight. Furthermore, the bend elicited significant differences between left and right steps in a number of variables including ground contact time, touchdown distance and hip flexion/extension and abduction/adduction angles. The results indicate that the roles of the left and right steps may be functionally different during bend sprinting. This specificity should be considered when designing training programmes.