Abstract
We have studied the proliferative response of unprimed T cells to syngeneic dendritic cells (DC) (syngeneic mixed leukocyte rection [SMLR]) in cultures of mouse spleen and lymph node. T cells purified by passage over nylon wool contain few DC and exhibit little proliferative activity during several days of culture. Addition of small numbers of purified syngeneic DC induces substantial, dose-dependent, T cell-proliferative responses that peak at day 4-5. B cells purified on anti-Ig-coated plates do not respond to DC at all doses tested. DC cultures medium does not induce proliferation, and coculture of DC and T cells is required. Purified mouse B and T lymphocytes stimulate SMLR weakly if at all. Likewise, peritoneal and spleen macrophages are weak or inactive. Therefore, DC are potent and possibly unique primary cells for stimulating the SMLR in mice. sIg- spleen lymph node cells show extensive background proliferative responses in vitro, and fail to respond to small numbers of purified DC. If the sIg- cells are treated with anti-Ia and complement, or passed over nylon wool, DC are removed and proliferative activity falls. Proliferative activity is restored by adding back DC at levels similar to those present in sIg- cells (1-2%). Thus, DC-dependent, T cell proliferation probably occurs in all spleen and lymph node cultures. As expected from previous work (6), DC are also potent inducers of allogeneic MLR. On a per DC basis, the syngeneic response is 10 times weaker than the allogeneic MLR, and it is not accompanied by the development of cytotoxic lymphocytes. The magnitude of the SMLR was not altered by antigen priming, and DC maintained in isologous rather than fetal calf serum were active stimulators. Therefore, syngeneic stimulation appears to be an intrinsic property of DC, and modification by exogenous agents does not seem to be required. Coculture of DC and T cells results in the development of cell clusters that can be isolated and characterized directly. The clusters account for 10-20% of the viable cells in the culture, but contain >80% of the responding T cells and stimulating DC by morphologic and surface-marker criteria. The efficient physical association of DC and responding T cells implies specific cell-cell recognition. We conclude that the SMLR reflects the ability of T cells, or some subpopulation of T cells, to interact with and proliferate in response to small numbers of DC.