Abstract
Studies of the evolution of collective behavior consider the payoffs of individual versus social learning. We have previously proposed that the relative magnitude of social versus individual learning could be compared against the transparency of payoff, also known as the "transparency" of the decision, through a heuristic, two-dimensional map. Moving from west to east, the estimated strength of social influence increases. As the decision maker proceeds from south to north, transparency of choice increases, and it becomes easier to identify the best choice itself and/or the best social role model from whom to learn (depending on position on east-west axis). Here we show how to parameterize the functions that underlie the map, how to estimate these functions, and thus how to describe estimated paths through the map. We develop estimation methods on artificial data sets and discuss real-world applications such as