Abstract
Cryptic evolution occurs when evolutionary change is masked by concurrent environmental change. In most cases, evolutionary changes in the phenotype are masked by changing abiotic factors. However, evolutionary change in one trait might also be masked by evolutionary change in another trait, a phenomenon referred to as evolutionary environmental deterioration. Nevertheless, detecting this second type of cryptic evolution is challenging and there are few compelling examples. Here, we describe a likely case of evolutionary environmental deterioration occurring in experimental burying beetle (Nicrophorus vespilloides) populations that are adapting to a novel social environment that lacks post-hatching parental care. We found that populations rapidly adapted to the removal of post-hatching parental care. This adaptation involved clear increases in breeding success and larval density (number of dispersing larvae produced per gram of breeding carcass), which in turn masked a concurrent increase in the mean larval mass across generations. This cryptic increase in larval mass was accomplished through a change in the reaction norm that relates mean larval mass to larval density. Our results suggest that cryptic evolution might be commonplace in animal families, because evolving trophic and social interactions can potentially mask evolutionary change in other traits, like body size.