Abstract
The prevalence of multicellular organisms is due in part to their ability to form
complex structures. How cells pack in these structures is a fundamental biophysical issue,
underlying their functional properties. However, much remains unknown about how cell packing
geometries arise, and how they are affected by random noise during growth - especially absent
developmental programs. Here, we quantify the statistics of cellular neighborhoods of two
different multicellular eukaryotes: lab-evolved “snowflake” yeast and the green alga Volvox carteri.
We find that despite large differences in cellular organization, the free space associated with
individual cells in both organisms closely fits a modified gamma distribution, consistent with
maximum entropy predictions originally developed for granular materials. This ‘entropic’ cellular
packing ensures a degree of predictability despite noise, facilitating parent-offspring fidelity even
in the absence of developmental regulation. Together with simulations of diverse growth
morphologies, these results suggest that gamma-distributed cell neighborhood sizes are a
general feature of multicellularity, arising from conserved statistics of cellular packing.