Abstract
This article presents a new model and an efficient solution algorithm for a bi-objective one-dimensional cutting-stock problem. In the cutting-stock—or trim-loss—problem, customer orders of different smaller item sizes are satisfied by cutting a number of larger standard-size objects. After cutting larger objects to satisfy orders for smaller items, the remaining parts are considered as useless or wasted material, which is called “trim-loss.” The two objectives of the proposed model, in the order of priority, are to minimize the total trim loss, and the number of partially cut large objects. To produce near-optimum solutions, a two-stage least-loss algorithm (LLA) is used to determine the combinations of small item sizes that minimize the trim loss quantity. Solving a real-life industrial problem as well as several benchmark problems from the literature, the algorithm demonstrated considerable effectiveness in terms of both objectives, in addition to high computational efficiency.