Abstract
The anterior temporal lobe (ATL) is considered a crucial area for the representation of transmodal concepts. Recent evidence suggests that specific regions within the ATL support the representation of individual object concepts, as shown by studies combining multivariate analysis methods and explicit measures of semantic knowledge. This research looks to further our understanding by probing conceptual representations at a spatially and temporally resolved neural scale. Representational similarity analysis was applied to human intracranial recordings from anatomically defined lateral to medial ATL sub-regions. Neural similarity patterns were tested against semantic similarity measures, where semantic similarity was defined by a hybrid corpus-based and feature-based approach. Analyses show that the perirhinal cortex, in the medial ATL, significantly related to semantic effects around 200 to 400 ms, and were greater than more lateral ATL regions. Further, semantic effects were present in low frequency (theta and alpha) oscillatory phase signals. These results provide converging support that more medial regions of the ATL support the representation of basic-level visual object concepts within the first 400 ms, and provide a bridge between prior fMRI and MEG work by offering detailed evidence for the presence of conceptual representations within the ATL.