Abstract
To meet the challenges of global health, vaccine design and development must be reconsidered to achieve cost of goods as low as 15¢ per dose. A new recombinant protein-based rotavirus vaccine candidate derived from non-replicative viral subunits fused to a P2 tetanus toxoid CD4(+) T cell epitope is currently under clinical development. We have sought to simplify the existing manufacturing process to meet these aims. To this end, we have taken a holistic process development approach to reduce process complexity and costs while producing a product with the required characteristics. We have changed expression system from Escherichia coli to Pichia pastoris, to produce a secreted product, thereby reducing the number of purification steps. However, the presence of proteases poses challenges to product quality. To understand the effect of fermentation parameters on product quality small-scale fermentations were carried out. Media pH and fermentation duration had the greatest impact on the proportion of full-length product. A novel acidic pH pulse strategy was used to minimize proteolysis, and this combined with an early harvest time significantly increased the proportion of full-length material (60-75%). An improved downstream process using a combination of CIEX and AIEX to further reduce proteases, resulted in maintaining product quality (95% yield).