Cover Image for System.Linq.Enumerable+EnumerablePartition`1[System.Char]

Double Higgs boson production and Higgs self-coupling extraction at CLIC

OAI: oai:www.repository.cam.ac.uk:1810/315484 DOI: 10.17863/CAM.62591
Published by:

Abstract

AbstractThe Compact Linear Collider (CLIC) is a future electron–positron collider that will allow measurements of the trilinear Higgs self-coupling in double Higgs boson events produced at its high-energy stages with collision energies from $$\sqrt{s}$$ s  = 1.4 to 3 TeV. The sensitivity to the Higgs self-coupling is driven by the measurements of the cross section and the invariant mass distribution of the Higgs-boson pair in the W-boson fusion process, $$\text {e}^{+}\text {e}^{-}\rightarrow {\text {H}\text {H}\nu \bar{\nu }}$$ e + e - HH ν ν ¯ . It is enhanced by including the cross-section measurement of ZHH production at 1.4 TeV. The expected sensitivity of CLIC for Higgs pair production through W-boson fusion is studied for the decay channels $$\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}$$ b b ¯ b b ¯   and $$\mathrm{b}\bar{\mathrm{b}}\mathrm{W}\mathrm{W}^{*}$$ b b ¯ W W   using full detector simulation including all relevant backgrounds at $$\sqrt{s}$$ s = 1.4 TeV with an integrated luminosity of $$\mathcal {L}$$ L  = 2.5 ab$$^{-1}$$ - 1 and at $$\sqrt{s}$$ s = 3 TeV with $$\mathcal {L}$$ L  = 5 ab$$^{-1}$$ - 1 . Combining $$\text {e}^{+}\text {e}^{-}\rightarrow {\text {H}\text {H}\nu \bar{\nu }}$$ e + e - HH ν ν ¯ and ZHH  cross-section measurements at 1.4 TeV with differential measurements in $$\text {e}^{+}\text {e}^{-}\rightarrow {\text {H}\text {H}\nu \bar{\nu }}$$ e + e - HH ν ν ¯ events at 3 TeV, CLIC will be able to measure the trilinear Higgs self-coupling with a relative uncertainty of $$-8\%$$ - 8 % and $$ +11\%$$ + 11 % at 68% C.L., assuming the Standard Model. In addition, prospects for simultaneous constraints on the trilinear Higgs self-coupling and the Higgs-gauge coupling HHWW are derived based on the $${\text {H}\text {H}\nu \bar{\nu }}$$ HH ν ν ¯ measurement.