Cover Image for System.Linq.Enumerable+EnumerablePartition`1[System.Char]

Molecular basis of ligand recognition and activation of human V2 vasopressin receptor.

OAI: oai:www.repository.cam.ac.uk:1810/316751 DOI: 10.17863/CAM.63865
Published by:

Abstract

Vasopressin type 2 receptor (V2R) belongs to the vasopressin (VP)/oxytocin (OT) receptor subfamily of G protein-coupled receptors (GPCRs), which comprises at least four closely related receptor subtypes: V1aR, V1bR, V2R, and OTR. These receptors are activated by arginine vasopressin (AVP) and OT, two endogenous nine-amino acid neurohypophysial hormones, which are thought to mediate a biologically conserved role in social behavior and sexual reproduction. V2R is mainly expressed in the renal collecting duct principal cells and mediates the antidiuretic action of AVP by accelerating water reabsorption, thereby playing a vital role in controlling water homeostasis. Moreover, numerous gain-of-function and loss-of-function mutations of V2R have been identified and are closely associated with human diseases, including nephrogenic syndrome of inappropriate diuresis (NSIAD) and X-linked congenital nephrogenic diabetes insipidus (NDI). Thus, V2R has attracted intense interest as a drug target. However, due to a lack of structural information, how AVP recognizes and activates V2R remains elusive, which hampers the V2R-targeted drug design. Here, we determined a 2.6 Å resolution cryo-EM structure of the full-length, G s -coupled human V2R bound to AVP (Fig. 1a; Supplementary information, Table S1). The G s protein was engineered based on mini-G s that was used in the crystal structure determination of the G s -coupled adenosine A 2A receptor (A 2A R) to stabilize the V2R–G s protein complex (Supplementary information, Data S1). The final structure of the AVP–V2R–G s complex contains all residues of AVP (residues 1–9), the Gα s Ras-like domain, Gβγ subunits, Nb35, scFv16, and the V2R residues from T31 to L339 8.57 (superscripts refer to Ballesteros–Weinstein numbering). The majority of amino acid side chains, including AVP, transmembrane domain (TMD), all flexible intracellular loops (ICLs) and extracellular loops (ECLs) except for ICL3 and G185–G188 in ECL2, were well resolved in the model, refined against the EM density map (Fig. 1a; Supplementary information, Figs. S1–3). The complex structure can provide detailed information on the binding interface between AVP and helix bundle of the receptor, as well as the receptor–G s interface.