Cover Image for System.Linq.Enumerable+EnumerablePartition`1[System.Char]

Mesenchymal Stem Cells Increase Alveolar Differentiation in Lung Progenitor Organoid Cultures.

OAI: oai:www.repository.cam.ac.uk:1810/292407 DOI: 10.17863/CAM.39557
Published by:

Abstract

Lung epithelial cell damage and dysfunctional repair play a role in the development of lung disease. Effective repair likely requires the normal functioning of alveolar stem/progenitor cells. For example, we have shown in a mouse model of bronchopulmonary dysplasia (BPD) that mesenchymal stem cells (MSC) protect against hyperoxic lung injury at least in part by increasing the number of Epcam+ Sca-1+ distal lung epithelial cells. These cells are capable of differentiating into both small airway (CCSP+) and alveolar (SPC+) epithelial cells in three-dimensional (3D) organoid cultures. To further understand the interactions between MSC and distal lung epithelial cells, we added MSC to lung progenitor 3D cultures. MSC stimulated Epcam+ Sca-1+ derived organoid formation, increased alveolar differentiation and decreased self-renewal. MSC-conditioned media was sufficient to promote alveolar organoid formation, demonstrating that soluble factors secreted by MSC are likely responsible for the response. This work provides strong evidence of a direct effect of MSC-secreted factors on lung progenitor cell differentiation.