Cover Image for System.Linq.Enumerable+EnumerablePartition`1[System.Char]

MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia

Ana L Manera, Mahsa Dadar, John Cornelis van Swieten, Barbara Borroni, Raquel Sanchez-Valle, Fermin Moreno, Robert Laforce Jr, Caroline Graff, Matthis Synofzik, Daniela Galimberti, James Benedict Rowe, Mario Masellis, Maria Carmela Tartaglia, Elizabeth Finger, Rik Vandenberghe, Alexandre de Mendonca, Fabrizio Tagliavini, Isabel Santana, Christopher R Butler, Alex Gerhard, Adrian Danek, Johannes Levin, Markus Otto, Giovanni Frisoni, Roberta Ghidoni, Sandro Sorbi, Jonathan Daniel Rohrer, Simon Ducharme, D Louis Collins, FTLDNI investigators, Howard Rosen, Bradford C. Dickerson, Kimoko Domoto-Reilly, David Knopman, Bradley F. Boeve, Adam L. Boxer, John Kornak, Bruce L. Miller, William W. Seeley, Maria-Luisa Gorno-Tempini, Scott McGinnis, Maria Luisa Mandelli, GENFI Consortium, Sónia Afonso, Maria Rosario Almeida, Sarah Anderl-Straub, Christin Andersson, Anna Antonell, Silvana Archetti, Andrea Arighi, Mircea Balasa, Myriam Barandiaran, Nuria Bargalló, Robart Bartha, Benjamin Bender, Alberto Benussi, Luisa Benussi, Valentina Bessi, Giuliano Binetti, Sandra Black, Martina Bocchetta, Sergi Borrego-Ecija, Jose Bras, Rose Bruffaerts, Paola Caroppo, David Cash, Miguel Castelo-Branco, Rhian Convery, Thomas Cope, Maura Cosseddu, María de Arriba, Giuseppe Di Fede, Zigor Díaz, Diana Duro, Chiara Fenoglio, Camilla Ferrari, Carlos Ferreira, Catarina B. Ferreira, Toby Flanagan, Nick Fox, Morris Freedman, Giorgio Fumagalli, Alazne Gabilondo, Roberto Gasparotti, Serge Gauthier, Stefano Gazzina, Giorgio Giaccone, Ana Gorostidi, Caroline Greaves, Rita Guerreiro, Carolin Heller, Tobias Hoegen, Begoña Indakoetxea, Vesna Jelic, Lize Jiskoot, Hans-Otto Karnath, Ron Keren, Maria João Leitão, Albert Lladó, Gemma Lombardi, Sandra Loosli, Carolina Maruta, Simon Mead, Lieke Meeter, Gabriel Miltenberger, Rick van Minkelen, Sara Mitchell, Katrina M Moore, Benedetta Nacmias, Mollie Neason, Jennifer Nicholas, Linn Öijerstedt, Jaume Olives, Sebastien Ourselin, Alessandro Padovani, Jessica Panman, Janne Papma, Georgia Peakman, Irene Piaceri, Michela Pievani, Yolande Pijnenburg, Cristina Polito, Enrico Premi, Sara Prioni, Catharina Prix, Rosa Rademakers, Veronica Redaelli, Tim Rittman, Ekaterina Rogaeva, Pedro Rosa-Neto, Giacomina Rossi, Martin Rossor, Beatriz Santiago, Elio Scarpini, Sonja Schönecker, Elisa Semler, Rachelle Shafei, Christen Shoesmith, Miguel Tábuas-Pereira, Mikel Tainta, Ricardo Taipa, David Tang-Wai, David L Thomas, Hakan Thonberg, Carolyn Timberlake, Pietro Tiraboschi, Emily Todd, Philip Vandamme, Mathieu Vandenbulcke, Michele Veldsman, Ana Verdelho, Jorge Villanua, Jason Warren, Carlo Wilke, Ione Woollacott, Elisabeth Wlasich, Henrik Zetterberg, Miren Zulaica
OAI: oai:www.repository.cam.ac.uk:1810/318992 DOI: 10.17863/CAM.66110
Published by: BMJ Publishing Group

Abstract

Introduction: Structural brain imaging is paramount for the diagnosis of behavioural variant of frontotemporal dementia (bvFTD), but it has low sensitivity leading to erroneous or late diagnosis. Methods: A total of 515 subjects from two different bvFTD cohorts (training and independent validation cohorts) were used to perform voxel-wise morphometric analysis to identify regions with significant differences between bvFTD and controls. A random forest classifier was used to individually predict bvFTD from deformation-based morphometry differences in isolation and together with semantic fluency. Tenfold cross validation was used to assess the performance of the classifier within the training cohort. A second held-out cohort of genetically confirmed bvFTD cases was used for additional validation. Results: Average 10-fold cross-validation accuracy was 89% (82% sensitivity, 93% specificity) using only MRI and 94% (89% sensitivity, 98% specificity) with the addition of semantic fluency. In the separate validation cohort of definite bvFTD, accuracy was 88% (81% sensitivity, 92% specificity) with MRI and 91% (79% sensitivity, 96% specificity) with added semantic fluency scores. Conclusion: Our results show that structural MRI and semantic fluency can accurately predict bvFTD at the individual subject level within a completely independent validation cohort coming from a different and independent database.