Cover Image for System.Linq.Enumerable+EnumerablePartition`1[System.Char]

Modelling quantitative fungicide resistance and breakdown of resistant cultivars

OAI: oai:www.repository.cam.ac.uk:1810/348846 DOI: 10.17863/CAM.96272

Abstract

Plant pathogens respond to selection pressures exerted by disease management strategies. This can lead to fungicide resistance and/or the breakdown of disease-resistant cultivars, each of which significantly threaten food security. Both fungicide resistance and cultivar breakdown can be characterised as qualitative or quantitative. Qualitative (monogenic) resistance/breakdown involves a step change in the characteristics of the pathogen population with respect to disease control, often caused by a single genetic change. Quantitative (polygenic) resistance/breakdown instead involves multiple genetic changes, each causing a smaller shift in pathogen characteristics, leading to a gradual alteration in the effectiveness of disease control over time. Although resistance/breakdown to many fungicides/cultivars currently in use is quantitative, the overwhelming majority of modelling studies focus on the much simpler case of qualitative resistance. Further, those very few models of quantitative resistance/breakdown which do exist are not fitted to field data. Here we present a model of quantitative resistance/breakdown applied to Zymoseptoria tritici, which causes Septoria leaf blotch, the most prevalent disease of wheat worldwide. Our model is fitted to data from field trials in the UK and Denmark. For fungicide resistance, we show that the optimal disease management strategy depends on the timescale of interest. Greater numbers of fungicide applications per year lead to greater selection for resistant strains, although over short timescales this can be oset by the increased control oered by more sprays. However, over longer timescales higher yields are attained using fewer fungicide applications per year. Deployment of disease-resistant cultivars is not only a valuable disease management strategy, but also oers the secondary benefit of protecting fungicide effectiveness by delaying the development of fungicide resistance. However, disease-resistant cultivars themselves erode over time. We show how an integrated disease management strategy with frequent replacement of disease-resistant cultivars can give a large improvement in fungicide durability and yields.