Abstract
Abstract
We give a prescription for $$ \mathcal{N} $$
N
= 1 supersymmetrization of any (four-dimensional) nonlinear electrodynamics theory with a Lagrangian density satisfying a convexity condition that we relate to semi-classical unitarity. We apply it to the one-parameter ModMax extension of Maxwell electrodynamics that preserves both electromagnetic duality and conformal invariance, and its Born-Infeld-like generalization, proving that duality invariance is preserved. We also establish superconformal invariance of the superModMax theory by showing that its coupling to supergravity is super-Weyl invariant. The higher-derivative photino-field interactions that appear in any supersymmetric nonlinear electrodynamics theory are removed by an invertible nonlinear superfield redefinition.