The block start and initial steps following block exit are fundamental aspects of sprinting and their development is key to junior athletes’ progression. This study assessed the difference in force production between elite senior (including two sub-10 s 100-m sprinters) and junior academy sprinters during the block phase and the first two steps of a sprint. Thirty-seven male sprinters (17 senior, 20 junior) performed a series of maximal effort 20–40 m acceleration from blocks on an indoor track, with the ground reaction forces produced during the block phase and first two steps measured using force platforms. Senior athletes produced better block-phase performances (average horizontal external power; 15.52 ± 1.48 W/kg, M ± SD) compared with the juniors (12.37 ± 2.21 W/kg; effect size ± 90% confidence interval = 1.28 ± 0.38). However, force production during the initial two steps was comparable across groups. Specifically, senior athletes exhibited higher relative force production and ratio of forces during the early (∼15–35%) block phase and higher anteroposterior forces during the transition from bilateral to unilateral pushing (58–62% of the block phase). Front foot force production was also found to differentiate senior and junior groups at rear block exit (∼55% of the block phase). This may be a required response to the greater centre of mass displacement in order to prevent over-rotation in the senior athletes during the front block pushing phase. Collectively, these results indicate that the progression of junior athletes is non-uniform across the block phase and subsequent two contacts, which should be considered when attempting to progress junior athletes towards senior ranks.