Abstract
Cyclic polymers have long been reported in the literature, but their development has often been stunted by synthetic difficulties such as the presence of linear contaminants. Research into the synthesis of these polymers has made great progress in the past decade, and this review covers the synthesis, properties, and applications of cyclic polymers, with an emphasis on bio-based aliphatic polyesters. Synthetic routes to cyclic polymers synthesized from bioderived monomers, alongside mechanistic descriptions for both ring closure and ring expansion polymerization approaches, are reviewed. The review also highlights some of the unique physical properties of cyclic polymers together with potential applications. The findings illustrate the substantial recent developments made in the syntheses of cyclic polymers, as well as the progress which can be made in the commercialization of bio-based polymers through the versatility this topology provides.