Abstract
We report on microwave power emission by ballistic electrons as they cross a region of spatially inhomogeneous magnetic field. Magnetic finger gates were fabricated at the surface of high mobility GaAs/AlGaAs Hall bars embedded in a coplanar waveguide. By modulating the current injected through the Hall bar and measuring the second harmonic of the signal rectified by a Schottky detector, we obtain the microwave power emitted by the superlattice. This power (~6W.m-2) is compared to the fluorescence of electron spins that undergo spin resonance as they cross domains of opposite magnetic field.