Abstract
We show that control systems with an analytic semigroup and control and observation operators that are not too unbounded have a Hankel operator that belongs to the Schatten class S-p for all positive p. This implies that the Hankel singular values converge to zero faster than any polynomial rate. This in turn implies fast convergence of balanced truncations. As a corollary, decay rates for the eigenvalues of the controllability and observability Gramians are also provided. Applications to the heat equation and a plate equation are given.