Cover Image for System.Linq.Enumerable+EnumerablePartition`1[System.Char]

Calibration of the comprehensive NDHA-N<sub>2</sub>O dynamics model for nitrifier-enriched biomass using targeted respirometric assays

OAI: oai:purehost.bath.ac.uk:openaire_cris_publications/1a6d877f-00a2-4182-abd4-46c5f5045673 DOI: https://doi.org/10.1016/j.watres.2017.09.013
Published by:

Abstract

The NDHA model comprehensively describes nitrous oxide (N2O) producing pathways by both autotrophic ammonium oxidizing and heterotrophic bacteria. The model was calibrated via a set of targeted extant respirometric assays using enriched nitrifying biomass from a lab-scale reactor. Biomass response to ammonium, hydroxylamine, nitrite and N2O additions under aerobic and anaerobic conditions were tracked with continuous measurement of dissolved oxygen (DO) and N2O. The sequential addition of substrate pulses allowed the isolation of oxygen-consuming processes. The parameters to be estimated were determined by the information content of the datasets using identifiability analysis. Dynamic DO profiles were used to calibrate five parameters corresponding to endogenous, nitrite oxidation and ammonium oxidation processes. The subsequent N2O calibration was not significantly affected by the uncertainty propagated from the DO calibration because of the high accuracy of the estimates. Five parameters describing the individual contribution of three biological N2O pathways were estimated accurately (variance/mean < 10% for all estimated parameters). The NDHA model response was evaluated with statistical metrics (F-test, autocorrelation function). The 95% confidence intervals of DO and N2O predictions based on the uncertainty obtained during calibration are studied for the first time. The measured data fall within the 95% confidence interval of the predictions, indicating a good model description. Overall, accurate parameter estimation and identifiability analysis of ammonium removal significantly decreases the uncertainty propagated to N2O production, which is expected to benefit N2O model discrimination studies and reliable full scale applications.