In order to increase perceptual precision the adult brain dynamically combines redundant information from different senses depending on their reliability. During object size estimation, for example, visual, auditory and haptic information can be integrated to increase the precision of the final size estimate. Young children, however, do not integrate sensory information optimally and instead rely on active touch. Whether this early haptic dominance is reflected in age-related differences in neural mechanisms and whether it is driven by changes in bottom-up perceptual or top-down attentional processes has not yet been investigated. Here, we recorded event-related-potentials from a group of adults and children aged 5–7 years during an object size perception task using auditory, visual and haptic information. Multisensory information was presented either congruently (conveying the same information) or incongruently (conflicting information). No behavioral responses were required from participants. When haptic size information was available via actively tapping the objects, response amplitudes in the mid-parietal area were significantly reduced by information congruency in children but not in adults between 190 ms–250 ms and 310 ms–370 ms. These findings indicate that during object size perception only children's brain activity is modulated by active touch supporting a neural maturational shift from sensory dominance in early childhood to optimal multisensory benefit in adulthood.