Cover Image for System.Linq.Enumerable+EnumerablePartition`1[System.Char]

Weakly nonlinear convection in a porous layer with multiple horizontal partitions

OAI: oai:purehost.bath.ac.uk:publications/d7012271-3fa6-4c8f-b115-2c09bfb61ee1 DOI: https://doi.org/10.1007/s11242-014-0310-y
Published by:

Abstract

We consider convection in a horizontally uniform fluid-saturated porous layer which is heated from below and which is split into a number of identical sublayers by impermeable and infinitesimally thin horizontal partitions. Rees and Genç (Int J Heat Mass Transfer 54:3081-3089, 2010) determined the onset criterion by means of a detailed analytical and numerical study of the corresponding dispersion relation and showed that this layered system behaves like the single-sublayer constant-heat-flux Darcy-Bénard problem when the number of sublayers becomes large. The aim of the present work is to use a weakly nonlinear analysis to determine whether the layered system also shares the property of the single-sublayer constant-heat-flux Darcy-Bénard problem by having square cells, as opposed to rolls, as the preferred planform for convection.