Abstract
The rhenium and technetium dichalcogenides are layered van der Waals semiconductors which show a large number of Raman-active zone-centre phonon modes as a result of their unusually large unit cells and deviation from hexagonal symmetry. They thus offer the possibility of introducing in-plane anisotropy into composite heterostructures based on van der Waals materials, and Raman spectroscopy is generally used to determine their in-plane orientation. We show that first-principles calculations give a good description of the lattice dynamics of this family of materials and thus predict the zone-centre phonon frequencies and Raman activities of TcS2. We consider the distribution of the phonon modes in frequency and their atomic displacements and give a unified understanding of the phonon frequencies and Raman spectra of ReS2, TcS2 and ReSe2 in terms of the scaling of Raman frequency with the chalcogen mass.