We consider nonadaptive group testing with Bernoulli tests, where each item is placed in each test independently with some fixed probability. We give a tight threshold on the maximum number of tests required to find the defective set under optimal Bernoulli testing. Achievability is given by a result of Scarlett and Cevher; here we give a converse bound showing that this result is best possible. Our new converse requires three parts: a typicality bound generalising the trivial counting bound, a converse on the COMP algorithm of Chan et al, and a bound on the SSS algorithm similar to that given by Aldridge, Baldassini, and Johnson. Our result has a number of important corollaries, in particular that, in denser cases, Bernoulli nonadaptive group testing is strictly worse than the best adaptive strategies.