Abstract
A comprehensive analysis of the defect detection performance of long pulse excitation thermographic NDE is presented. An analytical procedure for predicting the thermal image contrasts of defects of specified size and depth is developed and validated by extensive experimental studies of test pieces having a wide range of thermal properties. Results obtained using long pulse (~5 s) excitation are compared with those obtained using traditional flash excitation. The conditions necessary for the success of the long pulse method are explained and illustrated by both modelling and experimental results. Practical advantages of long pulse excitation are discussed.