In this paper we analyze the evolution of the time averaged energy densities associatedwith a family of solutions to a Schrödinger equation on a Lie group ofHeisenberg type. We use a semi-classical approach adapted to the stratified structure of the group and describe the semi-classical measures (also called quantum limits) that are associated with this family. This allows us to prove an Egorov's type Theorem describing the quantum evolution of a pseudodifferential semi-classical operator through the semi-group generated by a sub-Laplacian.