As a result of the widespread use of small-scale and low-power electronic devices, the demand for micro-energy sources has increased, in particular the potential to harvest the wide variety of energy sources present in their surrounding environment. In this paper, a novel coupled nanogenerator that can realize energy harvesting for multiple energy sources is reported. Based on the unique electrical properties of ferroelectric Bi 0.5Na 0.5TiO 3 (BNT) materials, it is possible to combine a photovoltaic cell, pyroelectric nanogenerator, and triboelectric-piezoelectric nanogenerator in a single element to harvest light, heat, and mechanical energy simultaneously. To evaluate the effectiveness of coupling for different materials, a Yang coupling factor (k C,Q) is defined in terms of transferred charge, where BNT has the largest k C,Q of 1.29 during heating, indicating that BNT has the best coupling enhancement compared to common ferroelectric materials. This new criterion and novel device structure therefore provide a new basis for the future development of coupled nanogenerators which are capable of harvesting multiple sources of energy.