Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) allow extracellular stimuli to redistribute Ca2+ from the ER to cytosol or other organelles. We show, using small interfering RNA (siRNA) and vacuolar H+-ATPase (V-ATPase)...
The transient elevation of cytosolic free calcium concentration ([Ca2+ ]cyt ) induced by cold stress is a well-established phenomenon; however, the underlying mechanism remains elusive. Here, we report that the Ca2+ -permeable...
INTRODUCTION: The second most common form of early-onset dementia-frontotemporal dementia (FTD)-is often characterized by the aggregation of the microtubule-associated protein tau. Here we studied the mechanism of tau-induced...
Understanding the communication theoretical capabilities of information transmission among neurons, known as neuro-spike communication, is a significant step in developing bio-inspired solutions for nanonetworking. In this...
Muscle function is regulated by Ca2+, which mediates excitation-contraction coupling, energy metabolism, adaptation to exercise, and sarcolemmal repair. Several of these actions rely on Ca2+ delivery to the mitochondrial matrix...
All three subtypes of inositol 1,4,5-trisphosphate receptor (IP3R) are intracellular Ca2+ channels that are co-regulated by IP3 and Ca2+ This allows IP3Rs to evoke regenerative Ca2+ signals, the smallest of which are Ca2+ puffs...
How neurons are capable of decoding stimulus intensity and translate this information into complex behavioral outputs is poorly defined. Here, we demonstrate that the C. elegans interneuron AIB regulates two types of behaviors...
Intracellular Ca2+ and cAMP typically cause opposing effects on airway smooth muscle contraction. Receptors that stimulate these pathways are therapeutic targets in asthma and chronic obstructive pulmonary disease. However, the...
In plants, nuclear Ca2+ releases are essential to the establishment of nitrogen-fixing and phosphate-delivering arbuscular mycorrhizal endosymbioses. In the legume Medicago truncatula, these nuclear Ca2+ signals are generated by...
Skeletal muscle Na+ channels possess Ca2+- and calmodulin-binding sites implicated in Nav1.4 current (INa) downregulation following ryanodine receptor (RyR1) activation produced by exchange protein directly activated by cyclic...
The P2X4 purinergic receptor is targeted to endolysosomes, where it mediates an inward current dependent on luminal ATP and pH. Activation of P2X4 receptors was previously shown to trigger lysosome fusion, but the regulation of...
Bcl-2 family proteins are considered as one of the major regulators of apoptosis. Indeed, this family is known to control the mitochondrial outer membrane permeabilization (MOMP): a central step in the mitochondrial pathway of...
The first intracellular loop (ICL1) of G protein-coupled receptors (GPCRs) has received little attention, although there is evidence that, with the 8th helix (H8), it is involved in early conformational changes following...
BACKGROUND: The motor protein myosin Va plays an important role in the trafficking of intracellular vesicles. Mutation of the Myo5a gene causes Griscelli syndrome type 1 in humans and the dilute phenotype in mice, which are both...
Plants use changes in cytosolic free Ca2+ ("signatures") to encode information from the specific signals generated in development, immunity and stress perception. Phosphate availability has a significant impact on the...
Adaptive immune responses are initiated by triggering of the T cell receptor. Single-molecule imaging based on total internal reflection fluorescence microscopy at coverslip/basal cell interfaces is commonly used to study this...
Two-pore channels (TPCs) are a ubiquitous family of cation channels that localize to acidic organelles in animals and plants to regulate numerous Ca2+-dependent events. Little is known about TPCs in unicellular organisms despite...
IP3 receptors (IP3Rs) release Ca2+ from the ER when they bind IP3 and Ca2+. The spatial organization of IP3Rs determines both the propagation of Ca2+ signals between IP3Rs and the selective regulation of cellular responses. Here...
Signaling nanodomains rely on spatial organization of proteins to allow controlled intracellular signaling. Examples include calcium release sites of cardiomyocytes where ryanodine receptors (RyRs) are clustered with their...