Let d ≥ 2. The Cheeger constant of a graph is the minimum surfaceto- volume ratio of all subsets of the vertex set with relative volume at most 1/2. There are several ways to define surface and volume here: The simplest...
Let d ≥ 2. The Cheeger constant of a graph is the minimum surfaceto- volume ratio of all subsets of the vertex set with relative volume at most 1/2. There are several ways to define surface and volume here: The simplest...
Consider a graph on randomly scattered points in an arbitrary space, with any two points x, y connected with probability φ(x, y). Suppose the number of points is large but the mean number of isolated points is O(1). We give...
In the random geometric graph G(n, rn), n vertices are placed randomly in Euclidean d-space and edges are added between any pair of vertices distant at most rn from each other. We establish strong laws...
|< |
< |
1 |